Module lib.dataloader.LlamaDataLoader

Expand source code
import torch
from torch.utils.data import DataLoader, Dataset
from torch.utils.data.dataloader import _collate_fn_t

class LlamaDataLoader(DataLoader):
    def __init__(self, dataset: Dataset, collate_fn: _collate_fn_t, batch_size: int, seed: int, drop_last: bool=False) -> None:
        gen = torch.Generator()
        gen.manual_seed(seed)
        super().__init__(
            dataset=dataset,
            batch_size=batch_size,
            shuffle=True,
            collate_fn=collate_fn,
            generator=gen,
            drop_last=drop_last,
        )

Classes

class LlamaDataLoader (dataset: torch.utils.data.dataset.Dataset, collate_fn: Callable[[List[~T]], Any], batch_size: int, seed: int, drop_last: bool = False)

Data loader combines a dataset and a sampler, and provides an iterable over the given dataset.

The :class:~torch.utils.data.DataLoader supports both map-style and iterable-style datasets with single- or multi-process loading, customizing loading order and optional automatic batching (collation) and memory pinning.

See :py:mod:torch.utils.data documentation page for more details.

Args

dataset : Dataset
dataset from which to load the data.
batch_size : int, optional
how many samples per batch to load (default: 1).
shuffle : bool, optional
set to True to have the data reshuffled at every epoch (default: False).
sampler : Sampler or Iterable, optional
defines the strategy to draw samples from the dataset. Can be any Iterable with __len__ implemented. If specified, :attr:shuffle must not be specified.
batch_sampler : Sampler or Iterable, optional
like :attr:sampler, but returns a batch of indices at a time. Mutually exclusive with :attr:batch_size, :attr:shuffle, :attr:sampler, and :attr:drop_last.
num_workers : int, optional
how many subprocesses to use for data loading. 0 means that the data will be loaded in the main process. (default: 0)
collate_fn : Callable, optional
merges a list of samples to form a mini-batch of Tensor(s). Used when using batched loading from a map-style dataset.
pin_memory : bool, optional
If True, the data loader will copy Tensors into device/CUDA pinned memory before returning them. If your data elements are a custom type, or your :attr:collate_fn returns a batch that is a custom type, see the example below.
drop_last : bool, optional
set to True to drop the last incomplete batch, if the dataset size is not divisible by the batch size. If False and the size of dataset is not divisible by the batch size, then the last batch will be smaller. (default: False)
timeout : numeric, optional
if positive, the timeout value for collecting a batch from workers. Should always be non-negative. (default: 0)
worker_init_fn : Callable, optional
If not None, this will be called on each worker subprocess with the worker id (an int in [0, num_workers - 1]) as input, after seeding and before data loading. (default: None)
multiprocessing_context : str or multiprocessing.context.BaseContext, optional
If None, the default multiprocessing context_ of your operating system will be used. (default: None)
generator : torch.Generator, optional
If not None, this RNG will be used by RandomSampler to generate random indexes and multiprocessing to generate base_seed for workers. (default: None)
prefetch_factor : int, optional, keyword-only arg
Number of batches loaded in advance by each worker. 2 means there will be a total of 2 * num_workers batches prefetched across all workers. (default value depends on the set value for num_workers. If value of num_workers=0 default is None. Otherwise, if value of num_workers > 0 default is 2).
persistent_workers : bool, optional
If True, the data loader will not shut down the worker processes after a dataset has been consumed once. This allows to maintain the workers Dataset instances alive. (default: False)
pin_memory_device : str, optional
the device to :attr:pin_memory to if pin_memory is True.

Warning: If the spawn start method is used, :attr:worker_init_fn

cannot be an unpicklable object, e.g., a lambda function. See :ref:multiprocessing-best-practices on more details related to multiprocessing in PyTorch.

Warning: len(dataloader) heuristic is based on the length of the sampler used.

When :attr:dataset is an :class:~torch.utils.data.IterableDataset, it instead returns an estimate based on len(dataset) / batch_size, with proper rounding depending on :attr:drop_last, regardless of multi-process loading configurations. This represents the best guess PyTorch can make because PyTorch trusts user :attr:dataset code in correctly handling multi-process loading to avoid duplicate data.

However, if sharding results in multiple workers having incomplete last batches, this estimate can still be inaccurate, because (1) an otherwise complete batch can be broken into multiple ones and (2) more than one batch worth of samples can be dropped when :attr:drop_last is set. Unfortunately, PyTorch can not detect such cases in general.

See Dataset Types for more details on these two types of datasets and how :class:~torch.utils.data.IterableDataset interacts with Multi-process data loading.

Warning: See :ref:reproducibility, and :ref:dataloader-workers-random-seed, and

:ref:data-loading-randomness notes for random seed related questions.

.. _multiprocessing context: https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods

Expand source code
class LlamaDataLoader(DataLoader):
    def __init__(self, dataset: Dataset, collate_fn: _collate_fn_t, batch_size: int, seed: int, drop_last: bool=False) -> None:
        gen = torch.Generator()
        gen.manual_seed(seed)
        super().__init__(
            dataset=dataset,
            batch_size=batch_size,
            shuffle=True,
            collate_fn=collate_fn,
            generator=gen,
            drop_last=drop_last,
        )

Ancestors

  • torch.utils.data.dataloader.DataLoader
  • typing.Generic